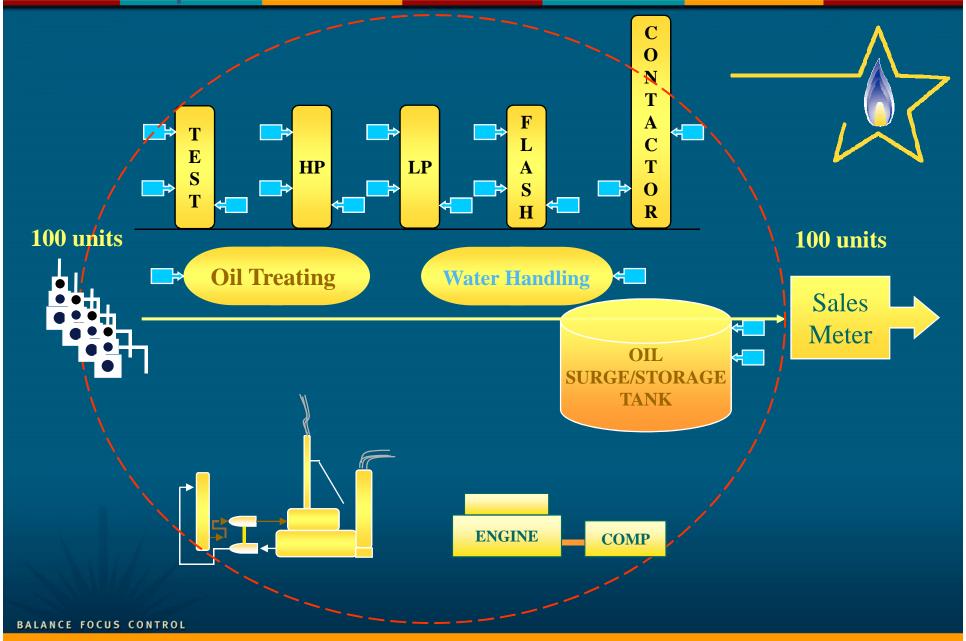


April 20, 2005 Oklahoma City, OK

PRO-OP Concept



 PRO-OP – a systematic approach to increase production efficiencies and profitability through evaluating process components whereby methane emissions are reduced on a cost effective basis.

Pro-Op

Process Optimization Review

Pro - Op

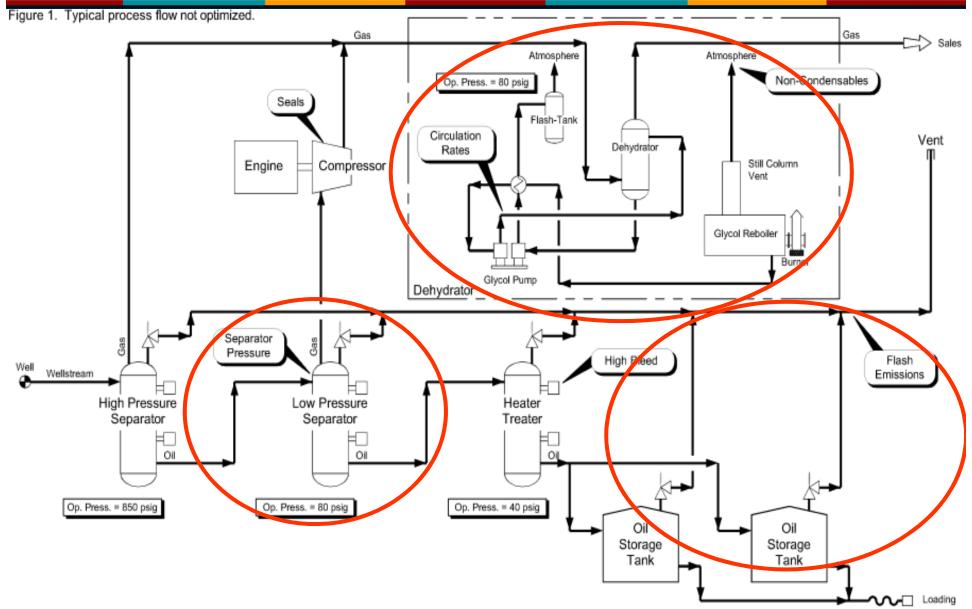
Process Optimization Review

Process

- Similar to a Process Hazards Review
- Follow process flow
- Identify opportunities

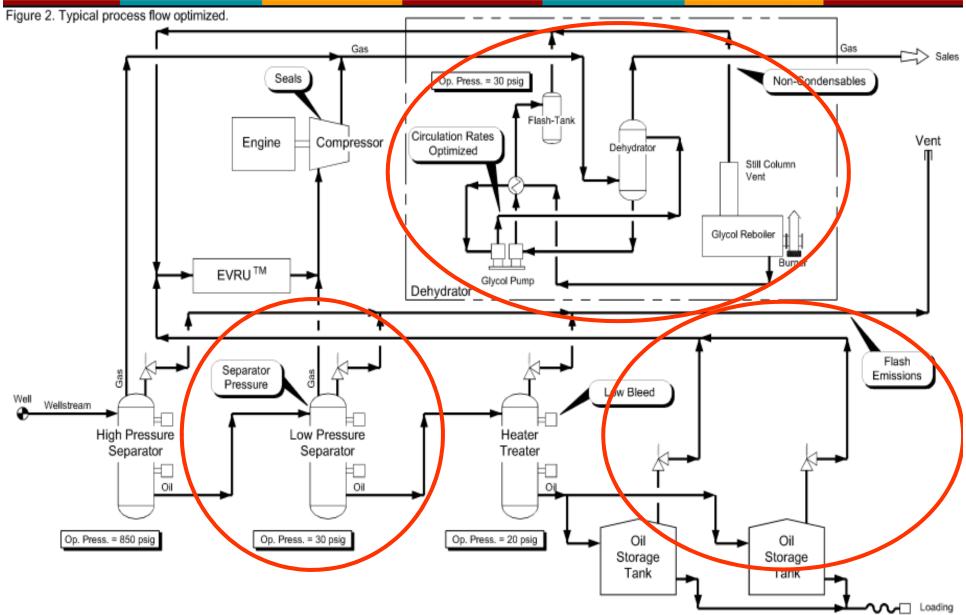
Attention to Details...Increases Profitability

Optimization Techniques


Table 1- List of major optimization techniques for oil and gas production operations

Process	Optimization Technique to Reduce Venting Emissions			
Pneumatics	1. Use low bleed pneumatics versus high bleed pneumatics			
	2. Use compressed air			
Pressure Relief System	Repair or replace leaking relief system components			
Production Separators	Reduce operating pressure of separators just upstream of storage tanks			
	2. Route flash gas to compressor for sales			
Glycol Dehydration Units	Install condenser, flare or vapor recovery system			
Still Column Vent	Optimize glycol circulation rates			
Glycol Dehydration Unit	1. Route gas to fuel system			
Flash Tanks	2. Install vapor recovery system or route compressor			
	3. Burn gas in flare			
	Repair components leaking into vent system			
Flare and Vent Systems	Install vapor recovery to recover routine natural gas venting			
Internal Combustion Engines	Maximize fuel efficiency with controls			
Reciprocating Compressors	Replace worn compressor rod packing rings and rods			
Centrifugal Compressors	Replace wet seals with dry seals in centrifugal compressors			
Crude Oil Storage Tank	Install vapor recovery system to recover vent gases			

Attention to Details...Increases Profitability


Non – Optimized Facility

Optimization Techniques

ATTENTION TO DETAILS EQUALS INCREASED PROFITABILITY

Before and After Optimization

Table 3- Vent gas emissions and value before and after optimization

Process	Optimization Technique	Gas Recovered (MMBTU/Yr)	Optimization Costs First Year ⁸ (\$)	Recovered Product Value ^c (\$/year)	First Year Optimization Savings/Costs ^D (\$)
Pneumatics	Low bleed natural gas pneumatics controllers	1,900	-2,200	9,500	11,700
Glycol Dehydration Unit	Vent gas from still column and flash tank recovered by EVRU™	50		3,850	
Glycol Dehydration Unit	Flash tank gas routed to vapor recovery system	1,100	120,000	5,500	62,850
Heater Treater Flash	Vapor recovery by EVRU™	19,200		96,000	
Oil Storage Tanks	Vapor recovery by EVRU™	15,500		77,500	
	Totals:	37,750	117,800	192,350	74,550

Optimization Techniques

Table 4-Total Vent gas and methane emissions before and after optimization

Process	Optimization Technique	Natural Gas Vented Not Optimized (MMSCF/yr)	Natural Gas Recovered by Optimization (MMSCF/yr)	Methane Only Emissions Not Optimized (MMSCF/yr)	Methane Recovered by Optimization (MMSCF/yr)
Pneumatics ^E	Low bleed natural gas pneumatics controllers	2	1.9	1.9	1.8
Glycol Dehydration Unit ^E	Vent gas from still column and flash tank recovered by EVRU™	1.2	1.2	1.1	1.1
Heater Treater Flash Gas ^F	Vapor recovery by EVRU™	8.4	8.4	5	5
Crude Oil Storage Tanks [©]	Vapor recovery by EVRU™	6.8	6.8	1.7	1.7
	Totals:	18.4	18.3	9.7	9.6

Attention to Details...Increases Profitability

Conclusion

- Use PRO-OP on new facility designs
- Prepare optimization template
- Prepare and conduct field training
- Use PRO-Op on existing facilities
- Increase Profitability and report methane reductions to EPA Natural Gas Star Program